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Abstract: We present a modular design for integrated programmable multimode sources of
arbitrary Gaussian states of light. The technique is based on current technologies, in particular
recent demonstrations of on-chip photon manipulation and the generation of highly squeezed
vacuum states in semiconductors. While the design is generic and independent of the choice of
integrated platform, we adopt recent experimental results on compound semiconductors as a
demonstrative example. Such a device would be valuable as a source for many quantum protocols
that range from imaging to communication and information processing.
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1. Introduction

Light provides an excellent platform for encoding quantum information that can be sent over
long distances. In principle, the information encoded in light can be manipulated e�ciently using
currently available passive and active components, but many practical issues make the preparation
and manipulation of such quantum states a di�cult task in practice. While bulk optics provides
a low-loss platform to manipulate information encoded in small photonic systems, scalability
remains a major problem. Integrated optics o�ers an e�ective route to mitigate scalability
challenges, and several demonstrations of state preparation and control in integrated optical
devices have been reported recently [1–4]. These were designed with linear optics quantum
computing in mind, assuming that the information is encoded in finite dimensional systems using
single photons. In this work we show how to extend these schemes to the realm of continuous
variable Gaussian states, by providing a blueprint for an integrated circuit that can be programmed
and reconfigured to prepare any Gaussian state within a wide range of parameters. The design,
approach and components utilized are based on currently available technologies, and rely on
natural non-linearities in integrated waveguides to prepare initially squeezed vacuum states in
multiple modes.

Most quantum information processing (QIP) protocols have been designed for quantum systems
with discrete degrees of freedom. These can be implemented using single photons with rail and/or
polarization encoding [5]. Such implementations su�er from several drawbacks such as the need
for multiple synchronized single photon sources, photon-photon interactions that are di�cult to
achieve, gates that are probabilistic, and ine�cient single-photon detection. Continuous variable
(CV) QIP protocols that utilize light’s continuous degrees of freedom o�er several advantages over
discrete approaches, in particular removing the requirement for single photons. In recent years
both CV and hybrid CV/discrete approaches have been gaining interest as realistic approaches to
QIP [6, 7].

In CV protocols, the initial states are often Gaussian and can be generated from vacuum
through a series of displacements, linear rotations, and squeezing [8]. Since these transformations
are routinely achieved in bulk-optics, arbitrary Gaussian state generation seems straightforward
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in principle. In practice, however, the limited scalability and stability of bulk optics approaches is
a hindrance to the development practical and large-scale quantum protocols, especially when the
protocol must be scaled up to many modes, as in CV cluster states [9, 10] or the input states for
some quantum simulations [11]. Furthermore, the requirement for in-line squeezing, i.e squeezing
of an arbitrary state, is di�cult even in bulk systems.

The ability to generate arbitrary multimode Gaussian states from an integrated chip would serve
as an important milestone towards demonstrations of greater complexity and practical quantum
technologies. Advances in the fabrication of integrated photonic circuits have made it possible
to create large stable optical interferometers exhibiting low loss [12]. Moreover, semiconductor
nonlinear waveguides have recently been used to produce squeezed vacuum states [13,14]. These
components are su�cient for generating and manipulating Gaussian light.

In this work we describe a generic architecture for integrated photonic devices that can be
programmed to prepare arbitrary N-mode Gaussian states. Our approach relies on a number
of practical considerations: (1) It is much easier to generate squeezed vacuum states than to
squeeze an arbitrary state. Consequently all squeezing is pushed to the beginning of the circuit.
(2) It is possible to modify Paris’s approximate displacement method [15] such that only a single
displacement beam is needed, reducing the number of injected modes required from ⇡ N to
2, regardless of N . (3) It is possible to control all elements using tunable phase shifters. As
a result the device can be fully programmable and dynamically reconfigurable using current
technology. (4) The design is modular, allowing easy adaptation to di�erent material platforms
and changing technologies, and is amenable to flip-chip implementations and hybrid-system
approaches. The result allows a stable, programmable, scalable device that relies on current
technological capabilities and can be implemented across a variety of photonic platforms.

2. Modular generation of Gaussian states

A state is called Gaussian if it has a Gaussian Wigner function; Equivalently, an N mode state is
a pure Gaussian state if and only if it can be generated from the vacuum by using a sequence
of generalized multimode [7, 16] displacement D([↵]), rotation R([✓]) and squeezing S([�])
operations, where the arguments are the multimode displacement vector [↵], rotation matrix [✓]
and squeezing matrix [�] (see Sec. 4 4.1 for details). For Gaussian state generation it is possible
to place the squeezing at the beginning of the sequence [17] and generate single-mode squeezed
vacuum states in each mode (see Sec. 4 4.1 for the derivation) removing the requirement for
in-line squeezing.

A realistic, modular approach to state generation can be based on the decomposition

|Gi = D([↵])R([⇣])S([�1m]) |0i (1)

where [�1m] is a diagonal squeezing matrix indicating only single-mode squeezing. Since any N

mode mixed Gaussian state can be created by tracing out N modes from a 2N mode purification
which is also a Gaussian state, we can restrict the discussion to pure states without loosing
generality.

2.1. Example: generating a pure one-mode Gaussian state in bulk optics

To illustrate the applicability of the construction implied by Eq. (1), we describe the generation
of pure one-mode Gaussian states in bulk optics as shown in Fig. 1. The squeezing, rotation, and
displacement transformations in phase space are depicted sequentially in Fig. 2. The scheme is as
follows:

(i) Initialization: The protocol requires 2 phase locked beams, a signal wavelength �
s

(e.g.
1550 nm) for displacement and a pump wavelength �

p

(e.g. 775 nm) for generating the squeezed
vacuum. In general it is useful to have an additional phase-locked beam of wavelength �

s

to use
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as a reference or local oscillator (LO) for subsequent homodyne detection. A common approach
is to coherently split a high intensity beam at �

s

three ways, with one beam used to generate the
�
p

pump via second harmonic generation (SHG) in a nonlinear crystal ‘doubler’ (e.g. BiBO).
The squeezed light generated at �

s

(see below) maintains a stable phase relative to the other two
beams.

(ii) Squeezed vacuum preparation: Squeezing (see Fig. 2 ii) through spontaneous parametric
downconversion (SPDC) [18] can be achieved using a periodically-poled lithium niobate (PPLN)
waveguide designed for squeezed light generation in the telecom C-band at �

s

= 1550 nm with
a pump field at �

p

= 775 nm. When operated in the single-pass configuration without optical
feedback from a cavity, the output state has a squeezing parameter r / �(2)

e f f

�

�

Ap
�

�

L, where �(2)
e f f

is the e�ective nonlinearity,
�

�

Ap
�

� is the pump amplitude, and L is the waveguide length [19]. The
quadratures defined as x̂ = (â + â

†)/
p

2 and p̂ = (â � â

†)/i

p
2, have variances h�X̂

2i = e

�2r/2
and h�P̂

2i = e

2r/2. The upper bound on r is set by the parametric gain of the nonlinear medium,
determined by both practical and physical limitations on A

p

, L, and �(2)
e f f

. The largest r directly
measured in a squeezed state to date is r = 1.73 [20], equivalent to 15 dB below the classical
shot noise level.

Doubler
(SHG)

Squeezer
(SPDC)

SPF

Laser
Beam Block

(Discarded Mode)

LPF 99:1 BS

EOM 𝜃

EOM 𝜙
𝐴�

𝛽

HWP+P

HWP+P

LO

DB

𝐺𝜆�
𝜆�

𝜆�

Fig. 1. One-mode Gaussian state generation with bulk optics. The initialization stage,
highlighted in red, is also used in the N-mode protocol. Squeezed vacuum is generated
through SPDC followed by a low-pass filter (LPF) to remove the pump. An electro-optic
modulator (EOM) is used to generate a phase shift. Displacement is generated via mixing
with a high power phase-locked coherent state. Acronyms: HPF = high-pass filter; DB =
displacement beam; LO = local oscillator; HWP+P = half wave plate and polarizer for
amplitude control.

(iii) Rotation: Arbitrary single-mode rotations (Fig. 2 iii) require a single phase-shifter to
modify the phase (relative to the reference). Note that by convention, rotations are defined in a
clockwise sense relative to the quadrature axes.

(iv) Displacement: The displacement operator D(↵) (see Fig. 2 iv) can be approximated by
mixing the squeezed state with a bright coherent state |↵0i at a beamsplitter (or equivalent mode
coupling device) [15] with reflectivity ⌘ << 1 such that p⌘↵0 = ↵ (see Sec 4 4.2 for details).
The deviation from an ideal displacement is plotted Fig. 3(b).
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∝

( )vac(i) (ii)
−(iii) (iv)

Fig. 2. Phase-space depiction of the four stage process. A one-mode vacuum state (i) is
squeezed (ii), rotated (iii) and displaced (iv).

3. Generation of arbitrary N-mode Gaussian states on-chip

The construction implied by (1) can be used as a basis for a tunable on-chip N mode Gaussian
state generator. Below we describe a generic approach for building such a device. We then move
to the simplest non-trivial example, a tunable two mode pure Gaussian state generator, using
AlGaAs as a model platform.

3.1. Generic on-chip modular approach

Recent work demonstrating on-chip squeezing [13, 21, 22], tunable phase-shifts [23, 24], and
arbitrary linear optical transformations [12] have assembled all the key ingredients necessary
for independent control of S([�1m]), R([✓]), and D([↵]) in an integrated quantum circuit. In the
generic setting, we consider each of the four stages as an independent module that can be fitted to
the desired platform. Our aim is to show that the technology for each module has already been
demonstrated at 1550 nm and to suggest possible implementations.

Initialization: The initialization stage consists of preparing coherent beams with stable relative
phase: One at 775 nm (pump) for use as a source for SPDC and one at 1550 nm for displacement.
Since many QIP tasks would require coherence with an external reference, we consider the
same external pumping as in the single-mode case of Sec. 2 2.1 (Fig. 1). The external (bulk
optics) stage does not a�ect scalability since the architecture suggested requires two input ports
regardless of N (see Fig 4). We note that, a nonlinear waveguide that is phase-matched for SPDC
with 775 nm can also achieve the 1550-to-775 nm SHG. However, this is limited by the amount
of optical power that can be handled by the chip without burning facets or inducing unwanted
nonlinearities and does not o�er an advantage in terms of scalability.

Generation of squeezed vacuum: The key requirements for an on-chip source of strong
squeezing are a high e�ective nonlinearity, low optical loss, and a long interaction length that
is typically facilitated by the use of cavities due to limitations on the pump power. An on-chip
squeezed light source based on low-loss silicon nitride microrings was recently demonstrated [13],
where by controlling integrated microheaters to modify the cavity coupling, the measured
squeezing was electrically tunable between 0.5 dB and 2 dB (corresponding to 0.9 dB and
3.9 dB when corrected for losses). This approach utilized a four-wave-mixing process stemming
from third-order nonlinearities. In another approach, which utilized parametric downconversion
from second-order (�(2)) nonlinearities in a periodically-poled lithium niobate waveguide
resonator [22], 2.9 dB of squeezing (corresponding to 4.9 dB in the lossless case) was directly
measured. Both of these examples used continuous-wave pumping. Utilizing the higher peak
powers and hence larger e�ective nonlinearities available through femtosecond pulsing can o�er
even higher degrees of squeezing. In Sec. 3.2, we describe an architecture based on AlGaAs that
may be capable of producing squeezing in excess of 10 dB in a single-pass configuration under
fs-pumping.

Programmable Mach Zehnder interferometers (MZIs) can be used to tune the squeezing
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parameter by attenuating the pump (see Fig. 4 and Sec. 3.2). Once squeezed light has been
generated, the pump is typically filtered to prevent it from causing unwanted nonlinear phase
modulation or squeezing elsewhere in the circuit. Common methods of filtering are wavelength
demultiplexers built from asymetric coupled waveguides [25], ring resonator filters, or Bragg
reflector gratings [26] which utilize the photonic bandgap e�ect.

Rotation: A generic rotation R([↵]) can be generated e�ciently using an an array of linear
optics elements (beam splitters and phase shifters) [27,28]. In integrated circuits, tunable low-loss
phase shifters can be achieved thermo-optically using resistive heaters to modify the local
refractive index [23], or electro-optically using bias voltages [24], where the optimum choice
depends on the material system. For example, AlGaAs circuits benefit from a strong electro-optic
Pockel e�ect owing to a large intrinsic �(2) nonlinearity [24], whereas silicon-on-insultor (SOI)
circuits possesses a relatively strong thermo-optic e�ect [12]. Beam-splitting transformations can
be provided by directional couplers which evanescently couple optical modes between adjacent
waveguides [29], or multi-mode interferometers (MMIs) which work based on self-imaging
e�ects [30]. 3D multiport splitters can also be realized on-chip [31], but planar nearest-neighbour
coupling remains the most compatible with conventional fabrication techniques. In-situ tunability
over the splitting ratio is commonly achieved by concatenating a pair of two-mode splitters with
a tunable phase shifter in one path between them, forming an MZI [24]. An MZI with a tunable
internal phase � to control its splitting ratio, followed by an additional external phase shift ✓ in
one outgoing arm, becomes the basic unit cell of reprogrammable circuits for universal rotations
(see Fig. 4). Recently, Harris et al. demonstrated a reprogrammable SOI quantum photonic chip
comprised of 56 MZIs and 213 phase shifters [12].

Displacement: It is possible to use Paris’s method [15] for approximating the displacement
operator D([↵]) by pairing each mode with an ancillary strong coherent state mode and displacing
each mode individually. However, such an architecture would be cumbersome to engineer with
2D planar waveguides and makes ine�cient use of chip real-estate. Instead it is possible to use a
single ancilla mode (mode 0) containing a strong coherent state |↵0i that cascades through an
array of strongly cross-coupling mode splitters, displacing each mode sequentially as depicted
in Fig. 3(a). This can be written as a rotation R([�]) =Œ

k

T

k

, where T

k

is a two-mode splitter
transformation between modes k and k � 1 with splitting factor (or reflectivity) ⌘

k

.
At each coupling intersection, the strong coherent beam in mode k � 1 displaces the state in

mode k and then the modes swap, i.e ⌘
k

<< 1 and most of the light from mode k is transmitted
to k � 1 and vice versa. If | i = R([⇣])S([�1m]) |0i is the state before the displacement, the
approximate transformation can be written as (see Sec. 4 4.2 for details):

R([�])D0(↵0)| i ⌦ |vaci0 ⇡ D

N

(↵
N

)P"

N

÷

k=1
D

k

(↵
k

)| i ⌦ |vaci0 (2)

where P" is a permutation of modes that takes 0 ! N and k ! k � 1 for all k 2 {1, · · · , N} as
in Fig. 3(a).

The displacement of each individual mode can be controlled by tuning the splitting factor
⌘
k

of each mode coupler and rotating the phase, while taking into account all ⌘
m

and ↵
m

for
which m < k. Tunability in ⌘

k

can be achieved by implementing the mode coupler as an MZI
with phase control [12, 24], or through electro-optically or thermally inducing a modal mismatch
between the two coupled waveguides [32]. Adding phase shifters �

k

between stages to tune the
phase of each |↵

k

i allows control over the displacement angle.
The first correction to the approximate displacement comes from the possibility that some

photons from the displaced mode will leak into the displacement beam (see Sec. 4 4.2).
Experimentally it is possible to put bounds on this error by blocking the displacement beam
and counting the number of photons exiting port N . In general, the approximation will not be a
dominant source of error as long as ⌘

k

is small compared to the probability that a single mode
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Fig. 3. (a) The cascaded displacement scheme for N = 4. At each step, a strong coherent
state

�

�

�

↵0
k

E

, in mode k is used to displace mode k + 1 by ↵
k+1 = ↵

0
k

p
⌘
k

and swap with that
mode using a beam splitter with reflectivity ⌘

k

<< 1. Note that the final modes are shifted
by �1 with respect to the original modes so that the final mode N is the ancilla which is
discarded. (b) Fidelity between a single-mode squeezed vacuum state after an approximate
displacement ↵ = 0.5 and the corresponding (ideal) displaced squeezed state (see Sec. 5.1).
Larger splitting factors ⌘ increase the probability that photons from the squeezed state ‘leak’
into the ancilla mode, or equivalently that noise is added by the ancilla, which degrades the
squeezing and hence fidelity.

will lose a photon elsewhere in the circuit. In Sec. 5.1 (see also Fig. 3(b)) we give a numerical
example of the bounds on this approximation in the singe-mode case.

3.2. Example: arbitrary two-mode Guassian states generated in an AlGaAs integrated

circuit

To give a concrete example of a device that includes all the elements above we describe a pure two-
mode Gaussian state generator based on AlGaAs, as in Fig. 4(a). We chose AlGaAs since it o�ers
a broad range of quantum-circuit functionalities, including electro-optic tuning, self-pumped
electrically-injected quantum state generation, and on-chip single photon detection [24,33–35]
(the latter two could become useful in various extensions of the device, for example generation
of non-Gaussian states). It also supports a large intrinsic �(2) nonlinearity that facilitates the
generation of squeezed vaccum states, with results indicating squeezing parameters of r > 3 in
AlGaAs waveguides [36]. Here we consider the degenerate Type I parametric process where the
downconverted photons are identical in frequency, polarization, and spatial mode.

The circuit layout is shown in Fig. 4(a), where eleven electrodes provide dynamic reconfig-
urability through electro-optic phase shifts, and MZIs serve as variable beamsplitters. To split
the injected pump equally between the two parametric generator paths, we use a 1-by-2 port
MMI due to the robustness of its fixed 50:50 splitting ratio against fabrication imperfections
which eliminates the need for additional electrodes. Electrodes v1 and v3 adjust the fraction of
pump power injected into the parametric generators, thereby tuning the squeezing, with v2 and
v4 providing phase control. A Bragg reflection grating (BRG) filter blocking 1550 nm is used
to define the start of the parametric generator, while a second BRG blocking the 775 nm pump
terminates it. The parametric generator is a segment of the nonlinear waveguide that is narrowed
in width. The narrowing adjusts the modal dispersion of the waveguide such that phase-matching
is satisfied for 775 nm only within the narrowed segment, with the phase-matching tuning
curve (e.g. see Fig. 2 in [37]) shifting to shorter pump wavelengths as the waveguide width is
increased [38]. Together with the BRGs, this provides a strategy for restricting squeezed light
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Fig. 4. (a) Schematic of a dynamically reconfigurable circuit for generating two-mode
Gaussian states. The device includes the three reconfigurable modules (squeezing, rotation
and displacement) fed by an external initialization module as in Fig. 1. The 11 electrodes
can be used to program the state (see text, Sec 3. 3.2). Five example settings (b) generate the
five states depicted in (c) where the (x2, p2) Wigner slice shows the quadrature evolution
in mode 2, while the (x1, x2) slice shows correlations between modes. The states are: (1)
squeezed vacuum in mode 1 and vacuum in mode 2; (2) two single-mode squeezed states
(with mode 1 amplitude-squeezed and mode 2 phase-squeezed); (3) a displaced two-mode
squeezed state where x1 and x2 are correlated; (4) a two-mode squeezed state with a
di�erent displacement amplitude and where x1 and x2 are now anti-correlated; and (5) two
single-mode squeezed states rotated with respect to (2).
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generation to only the desired region. Arbitrary rotations are provided via electrodes v5-v7.
Finally, displacements are controlled by electrodes v8-v11 (as in Fig. 3(a)), where the MZIs are
operated near conditions of perfect cross-coupling (mode swapping).

Figure 4(b) depicts the electrode voltages and corresponding output states for five di�erent
configurations. For readability we have re-normalized the voltage values to the following
mappings: for squeezing v1, v3 2 [0, 1] ! r 2 [0, rmax], with rmax = 1.0 (8.7 dB); for
single-mode phase rotations v2, v4, v6, v7 2 [0, 1] ! ✓ 2 [0, ⇡]; for two-mode mixing
v5 2 [0, 1] ! ⌘ 2 [1, 0]; for displacement angle v8, v10 2 [�1, 1] ! � 2 [�⇡, ⇡]; and for
displacement magnitude v9, v11 2 [0, 1] ! ⌘ 2 [0, 0.0125], where the resultant displacement
of mode k is D

k

(↵0
k

p
⌘
k+1) (see Fig. 3(a)) and |↵0 | = 40. Note that we remain under the estimated

bound of ⌘  0.014 (�18.4 dB) needed to maintain fidelities of 98% or greater with the ideal
displaced state (see Sec. 4.2). Figure 4(c) shows two Wigner function slices from the output state,
computed for five di�erent configurations after tracing out the ancilla mode.

The phase shifters envisaged in Fig. 4 are based on electro-optic modulation as seen in
previous AlGaAs quantum circuits [24]. Circuit reconfigurability can be achieved using a myriad
of techniques, some being more favourable than others depending on the specific needs of
the application. Electro-optic and thermal tuners have the advantage of being implementable
monolithically on the same platform as passive components, with the former capable of achieving
modulation speeds in the GHz, while the latter is limited by the thermal time constant but can
achieve switching speeds in the MHz when appropriately designed. In cases where performance
enhancements such as higher speed, better switching extinction, or lower bias voltages are needed,
advanced coupler designs such as grating-assisted, asymmetric, or ring-resonator couplers can be
used at the expense of a reduced operating bandwidth [39–41]. Whereas a simple electro-optic
MZI coupler may need up to tens of volts of bias, a ring resonator coupler can require merely a
fraction of a volt. In some cases, flip-chip bonding with active devices may be appropriate, but
this comes at the cost of increased optical loss, and hence is only really suitable for modulation
of the pump. For example, rapid tuning of the squeezing parameter r can be achieved with speeds
exceeding 10 GHz via absorption-based modulation of the pump using the quantum-confined
stark e�ect [42] with flip-chip bonded III-V semiconductors.

4. Methods

4.1. Gaussian states and unitaries

An N mode Gaussian unitary operation can be decomposed into an N mode rotation followed by
N mode squeezing followed by N mode displacement [43]

U

G

([✓], [�], [↵]) = D([↵])S([�])R([✓]), (3)

where the displacement vector [↵] has N complex entries ↵
k

representing the displacement of
each mode; the rotation matrix [✓] is an N ⇥ N unitary matrix with entries ✓

k,l; and the squeezing
matrix [�] is a complex, symmetric N ⇥ N matrix with entries �

k,l . These operators can be
written in Fock notation as:

• Displacement: D([↵]) = exp
n

Õ

k

⇣

↵
k

a

†
k

� ↵⇤
ka

k

⌘o

,

• Rotation: R([✓]) = exp
n

i

Õ

k,l

⇣

✓
k,la

†
k

a

l

⌘o

, and

• Squeezing: S([�]) = exp
n

Õ

k,l

⇣

�
k,la

†
k

a

†
l

� �⇤
k,laka

l

⌘o

.

A pure Gaussian state |Gi is generated by U

G

([✓], [�], [↵]) |0i, however since a rotation at
most adds a global phase to the vacuum state it is possible to remove the first rotation step:
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|Gi = U

G

([✓] = 0, [�], [↵]) |0i. To bring the squeezing matrix into diagonal form S([�1m]) (i.e a
form that implies only one mode squeezing) we use the following facts (see [8, 43]):

• R([⇣]))S([�]) = S([�0])R([⇣]) such that [�0] = e

i[⇣ ][�]ei[⇣ ]T , where T means transpose.

• It is possible to bring any symmetric matrix [�] into diagonal form using the Takagi
factorization, i.e for any [�] there exists a unitary U such that [�1m] = U[�]UT is a diagonal
matrix with non-negative entries.

It follows (see [17] for details) that we can write

U

G

([✓], [�], [↵]) = D([↵])R([⇣])S([�1m])R([⇣])R([✓]) (4)

The above can be simplified further in the case of Gaussian states since R([⇣])R([✓]) |0i = |0i,
which leads us to (1).

4.2. Approximate displacement

The scheme in Fig 3 generates an approximate displacement D([↵]) as well as a permutation of
the modes, as long as ⌘

k

is small enough. It is easier to see how well the approximation of (2)
works by writing T

k

in exponential form:

T

k

= P

k�1,ke

i�k�1,k (a†
k�1ak+a

†
k
ak�1)

e

i(�k��k�1)a†
k�1ak�1

with P

k�1,k being the operator that swaps modes k � 1 and k, �
k

is the phase of ↵
k

and �
k�1,k

defined via p
⌘
k

= sin(�
k�1,k) = ↵k

↵0
Œk�1

m=1 Cos(�m�1,m) with ��1,0 = 0. Note that for simplicity of
the derivation we neglect any phases added by the cross-coupling since these can always be
corrected.

Using the rules for switching the order of rotations and displacements, we can rewrite the
transformation

T1D0(↵0)

= P1D0(e��1↵0 cos �)D1(↵1)ei�0,1(a†
0a1+a

†
1a0)

e

��1a
†
0a0

= D0(↵1)D1(e��1↵0 cos �)P1e

i�0,1(a†
0a1+a

†
1a0)

e

��1a
†
0a0

which can be done for all terms, so that

N

÷

k=1
T

k

D0(↵0) =D0..N ([↵])⇥ (5)

D

N

"

e

i�N ↵0

N

÷

k=N

Cos(�
k�1,k)

#

N

÷

k=1
T

k

where we use the ordering convention ⇧N

k=1X

k

= X

N

X

N�1...X1. It is possible to move the
permutations to the left and get

N

÷

k=1
T

k

= P"

N

÷

k=1
e

i�k�1,k (a†
0ak+a

†
k
a0)

e

i(�N )a†
0a0 (6)

Now taking |↵0 | >> 1 such that �
k�1,k << 1 for all k we can see that

Œ

N

k=1 T

k

R([✓])S([�1m]) |0i ⇡
R([✓])S([�1m]) |0i. With first order corrections being

Õ

k

�
k�1,k(a†

N

a

k�1)R([✓])S([�1m]) |0i.
These can be treated as possible photon losses.
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4.3. Simulation

Numerical results were obtained using a simulation written in Python. The state of the system
was encoded in a displacement vector Æ

d and covariance matrix Æ� which were updated at each
optical element. The dynamical maps for closed system (i.e unitary) elements (squeezing, phase
shifters and beam splitters) were represented using symplectic transformations as per standard
methods (e.g. see [44]). Noise due to dissipation (for the results in Sec. 5.3) was added using a
standard transformation Æ

d ! ⌧ Æd, Æ� ! ⌧Æ� + (1 � ⌧) Æ�
V

where ⌧ is the transmission of the lossy
optical element and Æ�

V

is the covariance matrix for the vacuum state [45]. Two types of loss
were included: single-mode loss added after phase shifters and squeezers, and two-mode loss
added to each mode separately before and after each directional coupler or MZI.

5. Challenges and limitations

Throughout this work we assumed that everything is ideal and neglected the corrections due
to the approximate displacement stage. Below we discuss the main issues that will constrain
performance.

5.1. Bounds for single displacement stage

In principle, it should be possible to have arbitrarily good approximations of any displacement as
long as ↵0 is large enough. In practice however, the larger we make ↵0, the more precisely we
will need to control each ⌘

k

. It is therefore useful to fix ↵0 and establish an upper bound on ⌘
k

such that the fidelity with the ideal displacement is su�ciently high. We consider the simple
case of a single-mode squeezed vacuum state | i. The total state before displacement is given
by | i = |↵0i0 ⌦ | i1. In the ideal case the output state is | 0iIdeal = D0(↵0

p
⌘1)R0(⇡/2)| i0 ⌦

R1(⇡/2)|↵0
p

1 � ⌘1i1, whereas applying the standard mode-mixing transformation to the state
gives the true output: | 0iActual = T1 [|↵0i0 ⌦ | i1].

Fig. 3(b) shows the Uhlmann fidelity [46] between | 0iIdeal and | 0iActual computed as a
function of ⌘ and input state squeezing when | i is a squeezed vacuum state and the displacement
is fixed at ↵ = 0.5. As the squeezing increases, we see that high fidelity requires smaller ⌘ (and
larger ↵0). The bound on ⌘ for obtaining a fidelity of at least F is given in dB by ⌘[dB]  (ar

�b+c),
where for F � 95% we have {a = �30.35, b = 0.39, c = 16.11}, and for F � 98% we have
{a = �40.61, b = 0.29, c = 22.15}. For squeezing of up to nearly r = 0.5 (4.3 dB), ⌘ can be kept
relatively large at around -10 dB. However, for an input state with 15 dB of squeezing (r = 1.73)
we require ⌘  �21.5dB and ⌘  �25.5dB for F � 95% and F � 98% respectively. Though
small, these reflectivities are within range of existing integrated photonics technologies; Harris et
al. recently demonstrated tunable MZIs with extinction ratios of -66 dB [47].

5.2. Squeezing

Squeezing in the waveguide can be increased by either increasing the length of the squeezing
stage, or by increasing the 775 nm beam power. In practice too much pump power can damage
the device, have unwanted e�ects such as self-phase modulation, or be self-limiting through
two-photon absorption which increases with the pump intensity. Increasing length has two
problems: first it will require a larger device, but more significantly it will increase loss (see
below). These will limit the maximum achievable squeezing per mode in a real device. One target
to aim for is the ⇠ 20.5 dB needed for fault-tolerant cluster-based quantum computing using
Gottesman-Kitaev-Preskill encoding [48].

5.3. Loss

Minimizing optical loss is crucial to fully benefit from the squeezing achievable in a given platform.
This can prove quite challenging in practice owing to how quickly the squeezing decays as loss
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increases. The amount of measurable squeezing falls as S

T

= 10 · log10
⇥

T · 10�S0/10 + (1 � T)
⇤

where S0 and S

T

refer to the measurable squeezing in dB before and after losses respectively, and
T is the total transmission e�ciency [19]. Optical losses in an integrated circuit can be caused
by waveguide sidewall roughness, mode leakage at waveguide bends, reflections at material
interfaces (such as the waveguide facets), or modal mismatches when coupling into and out of the
devices. Loss therefore poses the most problematic constraint for scalability, since for arbitrary
rotations the device length grows quickly with the number of modes (around n

2 per the Reck
scheme [27]), and loss is exponential in the circuit length.

In Fig. 5(a) we have simulated the impact of loss on the two-mode Gaussian states generated
by the circuit in Fig. 4, as a function of the targeted squeezing. Errors in displacement due
to loss have been mitigated by small adjustments to electrode voltages v9 and v11, which
compensate for attenuation of the displacement beam’s amplitude ↵ and subsequent losses after
each displacement stage. The result of this strategy is illustrated in Fig. 5(b), where the targeted
state displacement has been restored. Our computed fidelity is therefore determined solely by
the loss of correlations and squeezing in the output state. In Fig. 5(a), the insertion loss of
2.2 dB/MZI is based closely on the AlGaAs circuit reported in Ref. [24], where the waveguide
propagation loss was 1.6 dB/cm. With further engineering, the length of each coupler and phase
shifter could be decreased to help reduce this loss substantially. As a benchmark for low-loss
quantum circuits, we consider the 0.1 dB/MZI achieved in Ref. [12] for a silicon-on-insulator
(SOI) platform. In this latter case, although propagation losses were higher at 2.4 dB/cm, the
phase shifters and couplers were achieved far more compactly, at tens of microns length rather
than several millimeters. Nonetheless, even for low losses of 0.1 dB/MZI, achieving high fidelity
for states targeting high squeezing (>5 dB) remains challenging.

One possible mitigation strategy is entanglement distillation, which uses local non-Gaussian
elements (such as photon counting) and sacrificial ancilla states to enhance the purity and
correlations of a state subjected to loss [6, 49]. This can benefit from the relative ease in which a
large number of ancillas can be prepared on an integrated chip compared to bulk approaches.
Another distillation approach is to use heralded noiseless linear amplifiers [50, 51], which can be
realized compactly in integrated optics, and in the case of AlGaAs, could even be monolithically
embedded within the same platform.
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Fig. 5. Impact of loss on the preparation of a squeezed two-mode state by the circuit in
Figure 4, with the displacement stage parameters tuned to mitigate errors in targeted vs.
actual displacement. (a) Uhlmann fidelity as a function of the squeezing parameter for various
values of MZI loss (the loss per coupler and phase-shifter are taken as a fixed fraction of the
MZI loss). (b) Comparing the ideal preparation of State 5 in Fig. 4 to a lossy preparation,
with and without mitigation via modification to the displacement stage parameters.
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6. Conclusions and outlook

We provided a generic architecture for a device that can prepare arbitrary multimode Gaussian
states. These states are useful for various tasks [7] including quantum sensing [52], quantum
communication [53, 54] and quantum computing [9]. The device would be capable of generating
the optimal states for these protocols, and will motivate further research on optimization of
CV protocols under realistic constraints such as loss. The device is programmable, making it
versatile and robust to some imperfections and bias drifts which can be actively corrected. Fast
reconfigurability would also aid in correcting optical phase drifts. Given current technologies, the
most significant limiting factor of such devices would be loss, which would both limit squeezing
and modify the outgoing state. Reconfigurability allows some loss mitigation, in particular it is
possible to compensate for attenuated displacement by modifying the displacement stage.

Beyond Gaussian states, the device provides a scalable route for generating more general
CV states, for example by placing detectors at some of the outputs and post-selecting a desired
non-Gaussian state or even using adaptive schemes. Since these may be di�cult to simulate, it
may be useful to optimize the control parameters via feedback as in recent NMR protocols [55,56].
The scheme can also be modified to perform arbitrary multimode Gaussian operations, however
such a device will require in-line squeezing which is very demanding in practice. Fast dynamical
reconfigurability and appropriately placed time delays on some modes can also allow us to use
the temporal degree of freedom to encode larger states [57, 58].

We showed that the device can be implemented in AlGaAs, but kept the design generic and
modular so that it would could be implemented using a variety of material systems which can
be chosen based on their particular advantegers for the task at hand, be it reduced loss, faster
reconfigurability, or integrability with active devices. Since photonic technology for implementing
such devices already exists, we expect to see a practical demonstration of our scheme in the near
future. Such a demonstration would be a significant milestone for CV QIP.
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